May 31, 2023
Воздействие горного климата на организм человека определяется многими природными факторами. В их числе резкие колебания влажности и температуры, уменьшение атмосферного давления и парциального давления кислорода, повышенная солнечная радиация, высокая ионизация воздуха.
Различают следующие горные уровни: низкогорье, среднегорье и высокогорье.
Низкогорье — до 800-1000 м над уровнем моря. На этой высоте
В условиях покоя и при умеренных нагрузках еще не проявляется существенное влияние недостатка кислорода на физиологические функции. Только при очень больших нагрузках отмечаются выраженные функциональные изменения.
Среднегорье — от 800—1000 до 2500 м над уровнем моря. Для этой зоны характерно возникновение функциональных изменений уже при умеренных нагрузках, хотя в состоянии покоя человек, как правило, не испытывает отрицательного влияния недостатка кислорода.
Высокогорье — Свыше 2500 м над уровнем моря. В этой зоне уже в состоянии покоя обнаруживаются функциональные изменения в организме, свидетельствующие о кислородной недостаточности.
Атмосферное давление. На уровне моря на широте 45° при температуре воздуха 0 °С давление воздушной массы равно 1013 Па на 1 см2 поверхности. Оно уравновешивает столб ртути высотой 760 мм. На высоте 1000 м давление падает на 12, 2000 м — 22, 3000 м -31, 5000 — 50%. Падение давления на разных высотах происходит неравномерно. Например, при изменении высоты от Ь До 500 м над уровнем моря снижение давления составляет 44 мм рт. ст., а при изменении высоты от 4500 до 5000 м — 26 мм рт. ст.
Состав воздуха. Газ, находящийся в воздухе (азот, кислород, аргон, диоксид углерода и др.), оказывает соответствующее его доле парциальное давление при постоянном соотношении различных газов на различной высоте. Таким образом, если учесть, что доля кислорода в воздухе равна 20,93 % (159 мм рт. ст. при барометрическом давлении 760 мм рт. ст.), легко определить парциальное давление кислорода на любой высоте. Например, на высоте 2000 м при атмосферном давлении 596 мм рт. ст. парциальное давление кислорода равно 596 ■ 0,2093 — 125 мм рт. ст.
Прямая зависимость между барометрическим давлением и парциальным давлением кислорода позволяет оценивать уровень «высоты» по любому из этих показателей.
Солнечная радиация и состояние электричества в атмосфере. В связи с тем, что атмосфера не является абсолютно прозрачной средой, часть солнечной радиации (особенно коротковолновой, ультрафиолетовой) поглощается. Особенно велико поглощение лучистой энергии в нижних слоях атмосферы, в наибольшей мере насыщенной водяными парами.
По мере увеличения высоты плотность атмосферы уменьшается, резко снижается концентрация водяных паров. Это приводит к повышению солнечной радиации, которая увеличивается примерно на 10 % на каждые 1000 м. Наибольшие изменения обнаруживаются со стороны ультрафиолетовой радиации, интенсивность которой возрастает на 3 — 4 % на каждые 100 м.
С увеличением высоты изменяется и состояние электричества в атмосфере. Отрицательная ионизация, преобладающая на малых высотах, с высотой уменьшается. В высокогорной среде преобладают положительные ионы, которые могут оказывать отрицательное влияние на адаптацию организма к горному климату.
Влажность воздуха. В нижних слоях атмосферы содержится определенное количество водяных паров. Повышение температуры способствует увеличению влажности и наоборот. В горах содержание водяных паров уменьшается и на высоте 2000 м оно в два раза ниже, чем на уровне моря. Следует отметить, что для горного климата характерны резкие колебания влажности.
Среди всех факторов, влияющих на организм человека в горных условиях, важнейшими являются снижение барометрического давления, плотности атмосферного воз-
Духа, снижение парциального давления кислорода. Остальные факторы (уменьшение влажности воздуха и силы гравитации, повышенная солнечная радиация, пониженная температура и др.), также несомненно влияющие на функциональные реакции организма человека, все же играют второстепенную роль.
Снижение парциального давления кислорода с увеличением высоты и связанное с ним нарастание гипоксических явлений приводит к снижению количества кислорода в альвеолярном воздухе и, естественно, к ухудшению снабжения тканей кислородом.
В зависимости от степени гипоксии уменьшается как парциальное давление кислорода в крови, так и насыщение гемоглобина кислородом. Соответственно уменьшается градиент давления кислорода между капиллярной кровью и тканями, ухудшается переход кислорода в ткани. При этом более важным фактором в развитии гипоксии является снижение парциального давления кислорода в артериальной крови, чем изменение насыщения ее кислородом. На высоте 2000 —2500 м над уровнем моря максимальное потребление кислорода снижается на 12—15%, что, в первую очередь, обусловлено снижением парциального давления кислорода во вдыхаемом воздухе.
В условиях среднегорья и особенно высокогорья существенно уменьшаются величины максимальной частоты сокращений сердца, максимального систолического объема и сердечного выброса, скорости транспорта кислорода артериальной кровью и, как следствие, максимального потребления кислорода (Dempsey et al., 1988). В числе факторов, обусловливающих эти реакции, наряду со снижением парциального давления кислорода, приводящего к снижению сократительной способности миокарда, необходимо назвать изменение жид-
Костного баланса, вызывающее повышение вязкости крови (Ferretti et al., 1990). Следует также учесть, что быстрое перемещение в горы приводит к снижению концентрации гемоглобина. Например, на высоте 2000 м это снижение напряжения кислорода составляет около 5 % — с 98 % до 93 %.
Все это создает значительно отличные от равнинных условия для обычной жизнедеятельности человека и вызывает широкий спектр адаптационных реакций со стороны различных систем организма. Причем при тренировочных и соревновательных нагрузках, характерных для современного плавания, действие гипоксических условий на организм резко возрастает.
Сразу после перемещения в горы в организме человека, попавшего в условия гипоксии, мобилизуются компенсаторные механизмы защиты от недостатка кислорода. Заметные изменения в деятельности различных систем организма наблюдаются уже начиная с высоты 1000—1200м над уровнем моря. К примеру, на высоте 1000 м МПК составляет 96 — 98% максимального уровня, зарегистрированного на равнине. С увеличением высоты МПК планомерно снижается на 0,7—1,0% через каждые 100 м (рис. 27.1). У неадаптированных к горным условиям людей увеличение ЧСС в покое и особенно при выполнении стандартных нагрузок может отмечаться уже на высоте 800—1000 м над уровнем моря.
Особенно ярко компенсаторные реакции проявляются при выполнении стандартных нагрузок. В этом можно легко убедиться, рассматривая динамику увеличения концентрации лактата в крови при выполнении стандартных нагрузок на различной высоте. Если выполнение нагрузок на высоте 1500 м ведет к увеличению лактата всего на 30 % по сравнению с данными, полученными на равнине, то на высоте 3000 — 3500 м увеличение концен-
447
ЧАСТЬ 6 Внетренировочные И Внесоревновательные Факторы В Системе Подготовки
![]() |
![]() |
|
|
Рис. 27.1
Влияние высоты
На уровень максимального
Потребления кислорода
(% МПК на уровне моря;
По обобщенным данным
Литературы)
Рис. 27.2
Прирост концентрации
Лактата в крови
У спортсменов высокого
Класса после стандартной
40-минутной нагрузки
В зависимости от высоты
Трации лактата достигает 170 — 240 % (рис. 27.2).
Рассмотрим характер приспособительных реакций к высотной гипоксии в различных стадиях процесса адаптации.
В первой стадии (острая адаптация) гипоксические условия приводят к возникновению гипоксемии и тем самым резко нарушают гоме-остаз организма, вызывая ряд взаимосвязанных процессов. Во-первых, активизируются функции систем, ответственных за транспорт кислорода из окружающей среды в организм и его распределение внутри организма: гипервентиляция легких, увеличение сердечного выброса, расширение сосудов мозга и сердца, сужение сосудов органов брюшной полости и мышц и др. (Saltin, 1988; Sutton et al. r 1992).
Во-вторых, развивается активация адренергической и гипофизар-но-адреналовой систем. Этот неспецифический компонент адаптации играет роль в мобилизации аппарата кровообращения и внешнего дыхания, но вместе с тем проявляется резко выраженным катаболичес-ким эффектом, т. е. отрицательным
448
Азотистым балансом, потерей массы тела, атрофией жировой ткани и т. д.
В-третьих, острая гипоксия, ограничивая ресинтез АТФ в митохондриях, вызывает прямую депрессию функции ряда систем организма, и прежде всего высших отделов головного мозга, что проявляется нарушениями интеллектуальной и двигательной активности. Это сочетание мобилизации систем составляет синдром, характеризующий первую стадию срочной, но во многом неустойчивой адаптации к гипоксии (Меерсон, 1986).
Вторая стадия (переходная адаптация) связана с формированием достаточно выраженных и устойчивых структурных и функциональных изменений в организме человека. В частности, развивается адаптационная полицитемия и происходит увеличение кислородной емкости крови; обнаруживается выраженное увеличение дыхательной поверхности легких, увеличивается мощность адренергической регуляции сердца, увеличивается концентрация миоглобина, повышается пропускная способность коронарного русла и др.
Третья стадия (устойчивая адаптация) связана с формированием устойчивой адаптации, конкретным проявлением которой является увеличение мощности и одновременно экономичности функционирования аппарата внешнего дыхания и кровообращения, рост дыхательной поверхности легких и мощности дыхательной мускулатуры, коэффициента утилизации кислорода из вдыхаемого воздуха. Происходит также увеличение массы сердца и емкости коронарного русла, повышение концентрации миоглобина и количества митохондрий в миокарде, увеличение мощности системы энергообеспечения и др. (Агаджанян и соавт., 1973; Колчинская, 1993).
Тренировка в горных условиях способствует повышению экономичности работы. Уже 5 — 8 ч актив-
ГЛАВА 27 Естественная И Искусственная Гипоксия В Системе Подготовки Пловцов
![]() |
![]() |
|
Рис. 27.3
Скорость передвижения (1) и ЧСС (2) при марафонском Беге (серые столбики) и ходьбе на 50 км (заштрихованные столбики) при выполнении программ тестов в различные дни тренировки в условиях естественной гипоксии в Мехико ( Fuchs, Reib, 1990)
Рис. 27.4
Кислородная стоимость
Бега одиннадцати
Марафонцев до и после
12 пед тренировки
В горах. При скорости
15 км-ц-‘ наблюдалось
Достоверное увеличение
Экономичности бега
(Сведенхаг, 1995)
Ной нагрузки в течение первых трех дней пребывания на высоте 2500 м приводят к увеличению кислородной емкости крови, а также диффузии кислорода в мышечную ткань. Достаточно наглядно это проявляется и при анализе ЧСС при выполнении программ стандартных тестов в различные дни тренировки в горах. В первые 3 — 4 дня периода акклиматизации ЧСС оказывается повышенной на 3 — 8 % п<э сравнению с условиями равнины. К концу первой недели завершается процесс акклиматизации и ЧСС устанавливается на уровне, близком к отмечающемуся в равнинных условиях. Однако уже через неделю тренировки, несмотря на увеличение скорости передвижения в программах тестов, у спортсменов отмечается снижение ЧСС (рис. 27.3).
О том, что тренировка в средне-горье является мощным фактором повышения экономичности работы, свидетельствуют исследования Све-денхага (1995), согласно результатам которых 12-недельная тренировка марафонцев в условиях гор привела к достоверному снижению кислородной стоимости бега со стандартной скоростью (рис. 27.4).
Обобщение результатов многочисленных исследований, проведенных по проблеме адаптации человека к условиям высотной гипоксии, позволило выделить ряд координированных между собой приспособительных механизмов: 1) механизмы, мобилизация которых может обеспечить достаточное поступление кислорода в организм несмотря на дефицит его в среде: гипервентиляция; гиперфункция сердца, обеспечивающая движение от легких к тканям увеличенного количества крови; 2) полицитемия и соответствующее увеличение кислородной емкости крови; 3) механизмы, делающие возможным достаточное поступление кислорода к мозгу, сердцу и другим жизненно важным органам, несмотря на гипоксемию, а именно: расширение артерий и капилляров мозга, сердца и т. д.; 4) уменьшение диффузионного расстояния для кислорода между капиллярной стенкой и митохондриями клеток за счет образования новых капилляров и изменения свойств клеточных мембран;
5) увеличение способности клеток утилизировать кислород вследствие роста концентрации миоглобина; увеличение способности клеток и тканей утилизировать кислород из крови и образовывать АТФ, несмотря на недостаток кислорода;
6) увеличение анаэробного ресин-теза АТФ за счет активации гликолиза, оцениваемое многими исследователями как существенный механизм адаптации.
Неправильно построенная тренировка в условиях среднегорья и высокогорья (чрезмерные нагрузки, нерациональное чередование
Работы и отдыха и т. п.) может привести к избыточному стрессу, при котором суммация воздействия горной гипоксии и гипоксии нагрузки приводит к реакциям, характерным для хронической горной болезни.
Особенно возрастает риск горной болезни при излишне напряженных физических нагрузках в условиях высокогорья на высоте 2500-3000 м и более (Clarke, 1988; Montgomery et al. r 1989). Причем не следует думать, что высокий уровень адаптации спортсменов к горным условиям и их частое пребывание в горах являются эффективным профилактическим средством против горной болезни. Она может возникнуть и у спортсменов высокой квалификации с большим опытом подготовки в среднегорье и высокогорье, поскольку они, как правило, начинают интенсивную подготовку в горных условиях без необходимой предварительной адаптации.
Профилактике возникновения высотной болезни способствует предварительная искусственная ги-поксическая тренировка, пассивное пребывание в барокамере, планомерное перемещение в высокогорье. Для устранения симптомов горной болезни возможно применение специальных препаратов (по показаниям врача) или перемещение на меньшую высоту.
Следует отметить, что время, необходимое для достижения устойчивой адаптации, определяется многими факторами. При прочих равных условиях адаптация наступает быстрее у людей, регулярно находящихся в условиях искусственной или естественной гипоксии; спортсмены, адаптированные к нагрузкам на выносливость, в том числе и пловцы, в особенности специализирующиеся на средних и длинных дистанциях, приспосабливаются к условиям среднегорья и высокогорья быстрее, чем лица, не занимающиеся спортом, или спортсмены, специализирующиеся в ско-ростно-силовых видах спорта; уве-
Личение высоты (в определенных пределах) стимулирует адаптационные реакции и ускоряет процесс адаптации; процесс адаптации протекает значительно быстрее у лиц, широко использующих интенсивные физические нагрузки, по сравнению с лицами, ведущими обычный образ жизни.
Этими же факторами определяется и продолжительность периода, в течение которого сохраняется достигнутый уровень адаптации. Спортсмены, хорошо адаптированные к гипоксическим условиям, при определенном режиме тренировки и применении сеансов искусственной гипоксии способны сохранять уровень реакций, достигнутый в горах, спустя 30 — 40 и более дней после возвращения на равнину. Например, при одноразовом планировании подготовки в горах количество эритроцитов возвращается к исходному уровню уже через 9—12 дней. Когда же ги-поксическая тренировка проводится регулярно на протяжении многих месяцев, ее эффект отмечается через 40 дней и более после прекращения такой тренировки. Это же относится и к таким показателям, как МПК, ПК на уровне ПАНО и др.